
Structures of Pivaloyl-L-prolyl-N-methyl-D-phenylalaninamide and Pivaloyl-L-prolyl-N-methyl-D-valinamide*

BY R. BARDI, A. M. PIAZZESI AND C. TONIOLO†

Biopolymer Research Centre, CNR, Department of Organic Chemistry, University of Padova, 35131 Padova, Italy

AND N. SEN, H. BALARAM AND P. BALARAM†

Molecular Biophysics Unit, Indian Institute of Science, Bangalore 560 012, India

(Received 15 February 1988; accepted 10 June 1988)

Abstract. C_{20}H_{29}N_{3}O_{3} (Piv-L-Pro-D-Phe-NHMe, 1; Piv, pivaloyl and NHMe, methylamino): M_r = 359.4, monoclinic, P_{21}1, a = 11.615 (3), b = 14.701 (3), c = 5.912 (3) Å, \(\beta = 98.04 (10) ^\circ \), \(V = 999.6 (6) \text{ Å}^3 \), \(Z = 2 \), \(D_x = 1.194 \), \(D_m = 1.19 \text{ g cm}^{-3} \), \(\lambda (\text{Mo } K\alpha) = 0.71069 \text{ Å} \), \(\mu = 0.756 \text{ cm}^{-1} \), \(F(000) = 388 \), \(T = 297 \text{ K} \). C_{16}H_{29}N_{3}O_{3} (Piv-L-Pro-D-Val-NHMe, 2): M_r = 311.4, orthorhombic, P_{21}2_{1}2_{1}, a = 17.868 (3), b = 16.062 (3), c = 6.183 (3) Å, \(V = 1774.5 (9) \text{ Å}^3 \), \(Z = 4 \), \(D_x = 1.166 \), \(D_m = 1.16 \text{ g cm}^{-3} \), \(\lambda (\text{Mo } K\alpha) = 0.71069 \text{ Å} \), \(\mu = 0.756 \text{ cm}^{-1} \), \(F(000) = 680 \), \(T = 297 \text{ K} \). Final R values: 0.047 for 1613 observed \([I > 3\sigma(I)]\) reflections of (1) and 0.079 for 1102 observed \([I > 3\sigma(I)]\) reflections of (2). The backbone conformation and crystal packing motif of the two compounds are similar and typical of Piv-L-Pro-D-Xxx-NHR terminally-blocked heterochiral dipeptides. In particular, the structure is folded at the L-Pro-D-Xxx sequence to form a type-II \(\beta \)-bend stabilized by a 4\(\cdots \)1 intramolecular N-H\(\cdots \)O=C H-bond between the methylamide N-H and pivaloyl C=O groups. Adopted by homochiral L-L and heterochiral L-D sequences, respectively (Venkatachalam, 1968; Toniolo, 1980; Rose, Gierasch & Smith, 1985).

The tendency of Pro-Xxx sequences to facilitate either type-I or type-II \(\beta \)-bend formation has stimulated several studies by spectroscopic and X-ray diffraction methods (Aubry, Cung & Marraud, 1985). As part of our continuing investigation of the various types of intramolecularly H-bonded conformations formed by Pro-containing short peptides (Venkataram Prasad, Balaram & Balaram, 1982; Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo & Bonora, 1983) we have determined the molecular and crystal structures of Piv-L-Pro-D-Phe-NHMe (1) and Piv-L-ProD-Val-NHMe (2).

Experimental. Colourless crystals of Piv-L-Pro-D-Phe-NHMe (1) (Aubry et al., 1985) were obtained from an ethyl acetate/petroleum ether solution by slow evaporation. X-ray diffraction data were collected on a Philips PW 1100 four-circle diffractometer from a crystal of approximate dimensions 0.6 \(\times \) 0.4 \(\times \) 0.4 mm. Accurate unit-cell parameters and crystal orientation matrices (together with their e.s.d.'s) were obtained from least-squares refinement of the 2\(\theta \), \(\omega \), \(\chi \) and \(\varphi \) values of 25 carefully centred reflections with \(7 < \theta < 14^\circ \). The \(h, k, l \) ranges measured were \(-13 \) to 13, \(0 \) to 17, and \(0 \) to 7, respectively. The \(\theta / 2 \theta \) scan mode (scan width 1.5\(^\circ \), scan speed 0.03\(^\circ \) s\(^{-1} \), total background time 20 s) and Mo \(K\alpha \) radiation monochromatized by a graphite crystal (\(\lambda = 0.71069 \text{ Å} \)) were used. During data collection three standard reflections (222, 331 and 132) were measured every 180 min to check the stability of

† Authors to whom correspondence should be addressed.
Table 1. Atomic coordinates and isotropic thermal parameters (\(A^2 \times 10^4\)) for the non-H atoms (with e.s.d.'s in parentheses)

\[
U_{eq} = \frac{1}{3} \sum_i \sum_j \langle \Delta x_i \Delta x_j \rangle \langle \Delta y_i \Delta y_j \rangle \langle \Delta z_i \Delta z_j \rangle
\]

<table>
<thead>
<tr>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>(1) Piv-L-Pro-D-Phe-NHMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O(1)</td>
<td>10042 (2)</td>
<td>2860 (2)</td>
<td>2201 (4)</td>
<td>61 (1)</td>
</tr>
<tr>
<td>O(2)</td>
<td>9384 (2)</td>
<td>7123 (4)</td>
<td>1777 (4)</td>
<td>67 (1)</td>
</tr>
<tr>
<td>N(1)</td>
<td>10870 (2)</td>
<td>1388 (4)</td>
<td>569 (4)</td>
<td>53 (1)</td>
</tr>
<tr>
<td>N(2)</td>
<td>7866 (2)</td>
<td>1774 (4)</td>
<td>2201 (4)</td>
<td>43 (1)</td>
</tr>
<tr>
<td>N(3)</td>
<td>8150 (2)</td>
<td>2876 (4)</td>
<td>940 (4)</td>
<td>59 (1)</td>
</tr>
<tr>
<td>C(1)</td>
<td>12768 (4)</td>
<td>3218 (4)</td>
<td>1579 (8)</td>
<td>102 (2)</td>
</tr>
<tr>
<td>C(2)</td>
<td>11817 (4)</td>
<td>3535 (3)</td>
<td>5048 (7)</td>
<td>82 (1)</td>
</tr>
<tr>
<td>C(3)</td>
<td>12864 (3)</td>
<td>2086 (3)</td>
<td>4766 (7)</td>
<td>78 (1)</td>
</tr>
<tr>
<td>C(4)</td>
<td>11817 (4)</td>
<td>3535 (3)</td>
<td>5048 (7)</td>
<td>82 (1)</td>
</tr>
<tr>
<td>C(5)</td>
<td>9920 (3)</td>
<td>2193 (3)</td>
<td>7123 (4)</td>
<td>67 (1)</td>
</tr>
<tr>
<td>C(6)</td>
<td>6960 (2)</td>
<td>2193 (3)</td>
<td>7123 (4)</td>
<td>67 (1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Symbol</th>
<th>x</th>
<th>y</th>
<th>z</th>
<th>Ueq</th>
</tr>
</thead>
<tbody>
<tr>
<td>(2) Piv-L-Pro-o-Val-NHMe</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>C(9)</td>
<td>11766 (2)</td>
<td>946 (3)</td>
<td>674 (6)</td>
<td>64 (1)</td>
</tr>
<tr>
<td>C(10)</td>
<td>896 (5)</td>
<td>2801 (6)</td>
<td>174 (18)</td>
<td>75 (3)</td>
</tr>
<tr>
<td>C(11)</td>
<td>7132 (2)</td>
<td>1474 (2)</td>
<td>3568 (5)</td>
<td>49 (1)</td>
</tr>
<tr>
<td>C(12)</td>
<td>5839 (2)</td>
<td>1240 (5)</td>
<td>2547 (6)</td>
<td>53 (1)</td>
</tr>
<tr>
<td>C(13)</td>
<td>5296 (2)</td>
<td>712 (2)</td>
<td>1420 (5)</td>
<td>53 (1)</td>
</tr>
<tr>
<td>C(14)</td>
<td>4214 (3)</td>
<td>-35 (4)</td>
<td>-1813 (8)</td>
<td>92 (2)</td>
</tr>
<tr>
<td>C(15)</td>
<td>4806 (3)</td>
<td>713 (3)</td>
<td>-838 (6)</td>
<td>72 (1)</td>
</tr>
<tr>
<td>C(16)</td>
<td>2815 (5)</td>
<td>525 (6)</td>
<td>6796 (13)</td>
<td>69 (3)</td>
</tr>
<tr>
<td>C(17)</td>
<td>12108 (2)</td>
<td>2404 (2)</td>
<td>2173 (5)</td>
<td>51 (1)</td>
</tr>
<tr>
<td>C(18)</td>
<td>9697 (2)</td>
<td>2404 (2)</td>
<td>2173 (5)</td>
<td>51 (1)</td>
</tr>
<tr>
<td>C(19)</td>
<td>9920 (3)</td>
<td>2193 (3)</td>
<td>7123 (4)</td>
<td>67 (1)</td>
</tr>
<tr>
<td>C(20)</td>
<td>4334 (3)</td>
<td>1213 (4)</td>
<td>1876 (8)</td>
<td>36 (2)</td>
</tr>
<tr>
<td>C(21)</td>
<td>3058 (3)</td>
<td>2790 (3)</td>
<td>393 (8)</td>
<td>41 (2)</td>
</tr>
<tr>
<td>C(22)</td>
<td>4214 (3)</td>
<td>-35 (4)</td>
<td>-1813 (8)</td>
<td>92 (2)</td>
</tr>
<tr>
<td>C(23)</td>
<td>4806 (3)</td>
<td>713 (3)</td>
<td>-838 (6)</td>
<td>72 (1)</td>
</tr>
<tr>
<td>C(24)</td>
<td>2815 (5)</td>
<td>525 (6)</td>
<td>6796 (13)</td>
<td>69 (3)</td>
</tr>
</tbody>
</table>

Discussion. The molecular structures of compounds (1) and (2) with the atomic numbering schemes are shown in Figs. 1 and 2, respectively. Bond lengths and bond angles are given in Table 2. Figs. 3 and 4 illustrate the packing modes of the molecules of (1) and (2), respectively.

Bond lengths and bond angles of (1) and (2) are in general agreement with previously described results for the geometry of the pivaloyl (Benedetti, Bavoso, Di Blasio, Pavone, Pedone, Toniolo & Bonora, 1982; Aubry et al., 1985) and amide (Chakrabarti & Dunitz, 1982) groups, Pro (Ashida & Kakudo, 1974; Benedetti et al., 1983; Ashida, Tsunogae, Tanaka & Yamane, 1987), Phe and Val (Gould, Gray, Taylor & Walkinshaw, 1985) residues and peptide unit (Benedetti, 1982). However, the values of C(4)-C(5)-N(1) and C(5)-N(1)-C(9) bond angles [122.2 (2) and 131.9 (2)]° for (1), and 122.6 (7) and 130.0 (6)° for (2) are considerably larger than those usually found in tertiary amides. Presumably, these were localized in the difference Fourier maps, but they were introduced in calculated positions and refined in the last cycle. The quantity minimized was \(w(F_0) - [F_0]^2\) with \(w = [\sigma^2(F) + 0.006271F]^2\). For all calculations SHELX76 (Sheldrick, 1976) was used. The final conventional unweighted \(R\) factor was 0.047 and the \(R\) factor weighted by \(w\) was 0.052; \(S = 0.83\).

Colourless crystals of Piv-L-Pro-o-Val-NHMe (2) (Aubry et al., 1985) were obtained from an ethyl acetate/petroleum ether solution by slow evaporation. The structure was solved by direct methods using SIR84 (Giacovazzo et al., 1984) and refined as described above for (1). However, the following variations should be noted: (i) approximate crystal dimensions 0.2 x 0.1 x 0.4 mm; (ii) \(h, k, l\) ranges 0 to 21, 0 to 19, and 0 to 7, respectively; (iii) scan width 1.2° and scan speed 0.02° s⁻¹; (iv) 332, 542 and 441 as standard reflections; (v) unique reflections up to \(\theta = 50^\circ\), 1829; (vi) the quantity minimized was \(w = [\sigma^2(F) + 0.01361F]^2\); (vii) final conventional unweighted \(R\) factor 0.079 and \(R\) factor weighted by \(w\) 0.079 (the relatively high \(R\) value should be attributed to the small size of the crystal and the subsequent poor quality of the diffraction data); (viii) \(S = 0.89\); (ix) \(\langle D/\sigma \rangle\) max 0.03; and max. and min. heights ±0.3 e Å⁻³.

Table 1 gives the final atomic coordinates and isotropic thermal parameters for the non-H atoms.*

* Lists of structure factors, anisotropic thermal parameters, H-atom coordinates, and torsion angles have been deposited with The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.
The pivaloylamide, peptide, and methylamide groups of (1) and (2) are all trans. The pertinent sequences of ω_2, ω_3 and ω_4 torsion angles (IUPAC–IUB Commission on Biochemical Nomenclature, 1970) are: 173.3 (2), −177.8 (2) and −178.5 (3)º for (1) and 180.0 (6), −178.2 (5) and 173.2 (6)º for (2). The pivaloylamino group is known to be locked in the trans conformation owing to the presence of the bulky tert-butyl moiety.

In both (1) and (2) the tert-butyl moiety of the pivaloylamino group assumes the usual conformation A, i.e. the C(2) methyl group is eclipsed with respect to the C(5)=O(1) bond and the other two methyls C(1) and C(3) are skew $\theta^{1,2}$ has values of −160.2 (3) and −164.7 (8)º, $\theta^{1,1}$ of 80.8 (4) and 79.5 (9)º, and $\theta^{1,3}$ of −41.9 (4) and −43.3 (9)º. In this conformation the C(9) atom experiences severe steric interactions with both C(1) and C(3) methyls (the range of values for the C(1)–C(9) and C(3)–C(9) non-bonded separations is 3.0–3.5 Å). Therefore, the aforementioned marked widening of the C(5)–N(1)–C(9) bond angle is
explained by the need to relieve such unfavourable interactions.

In both compounds the pyrrolidine ring of the L-Pro residue exhibits an approximate C\textsubscript{s} (envelope) symmetry, the mirror plane passing through the Cv atom. This conformation may be designated as C\textsubscript{s}−Cv \textit{exo} or conformation A, the Cv and C' atoms residing on the opposite side of the N−Ca−C3 plane (Ashida & Kakudo, 1974). The puckering coordinates for the two pyrrolidine rings are: \(q_2 = 0.385 (4) \text{ Å}, \varphi_2 = -78.2 (5) ^\circ\) and \(q_2 = 0.373 (7) \text{ Å}, \varphi_2 = 99.9 (10) ^\circ\), respectively (Cremer & Pople, 1975).

The D-Phe residue adopts a side-chain conformation of the type \(g^+ (t, g^+)\), the sequence of torsion angles \(\chi^1, \chi^2.1, \chi^2.2\) being 74.5 (3), -121.6 (3) and 62.6 (4)\(^\circ\).

For an L-Phe residue in peptides a definite preference has been found for \(\chi^1 = -60 \pm 20 ^\circ\) and \(\chi^2 = 90 \pm 30 ^\circ\) (Cody, Duax & Hauptman, 1973; Benedetti, Morelli, Némethy & Scheraga, 1983; Gould \textit{et al.}, 1985; Ashida \textit{et al.}, 1987). The side chain of the D-Val residue assumes the relatively common \((g, g^+)\) conformation with \(\chi^1.1\) and \(\chi^1.2\) values of -61.3 (7) and 67.8 (7)\(^\circ\), respectively.

The backbone conformation of (1) is folded at the L-Pro-D-Phe sequence. The \(\varphi, \psi\) values for the L-Pro \([-57.1 (3), 137.8 (3) ^\circ]\) and D-Phe \([71.7 (3), 12.3 (4) ^\circ]\) residues lie close to the values expected for an ideal type-II \(\beta\)-bend. A 4→1 intramolecular N−H⋯O=C H-bond is observed between the methylamide N−H and pivalolyl C=O groups. The N(3)⋯O(1) distance, 2.90 (1) Å, agrees well with the average value determined from a large number of peptide structures (Ramakrishnan & Prasad, 1971; Taylor, Kennard & Versichel, 1984).

The backbone conformation of (2) resembles that of (1) discussed above, folded at the L-Pro-D-Val sequence. Again, the \(\varphi, \psi\) torsion angles, -57.6 (7) and 132.6 (6)\(^\circ\) for L-Pro, and 70.6 (7) and 14.5 (8)\(^\circ\) for D-Val, are in good agreement with the values expected for a type-II \(\beta\)-bend conformation. The N(3)⋯O(1) distance of the 4→1 intramolecular H-bond is 2.88 (1) Å.

The crystal structure of (1) is characterized by a single intermolecular N−H⋯O=C H-bond between the D-Phe N−H and C=O groups of symmetry-related \((x, y, z-1)\) molecules. Also the crystal structure of (2) shows a single intermolecular N−H⋯O=C H-bond between the D-Val N−H and C=O groups of symmetry-related \((x, y, z-1)\) molecules. The N⋯O distances are 3.00 (1) and 2.96 (1) Å, respectively.

It may be concluded that the type of folding and H-bonding scheme reported here for compounds (1) and (2) is typical of the Piv-L-Pro-D-Xxx-NHR (Xxx = Ala, Tyr, Ser, Aib; R = Me, iPr) terminally-blocked heterochiral dipeptide amides so far investigated (Venkataram Prasad \textit{et al.}, 1982; Aubry, Ghermani & Marraud, 1984; Aubry \textit{et al.}, 1985).

References

Structure of 1-(1-Phenylcyclohexyl)piperidine (PCP)

By Phirtu Singh, Louis A. Jones and Richard Couch

Department of Chemistry, North Carolina State University, Raleigh, NC 27695-8204, USA

(Received 21 March 1988; accepted 9 June 1988)

Abstract. \(C_{17}H_{25}N\), \(M_r = 243.39\), monoclinic, \(P2_1/c\),
\(a = 12.727(5)\) Å, \(b = 11.480(5)\) Å, \(c = 10.175(6)\) Å, \(\beta = 102.58(3)°\),
\(V = 1451(1)\) Å\(^3\), \(Z = 4\), \(D_x = 1.11\) g cm\(^{-3}\), \(\lambda(Cu K\alpha) = 1.54178\) Å,
\(\mu = 4.5\) cm\(^{-1}\), \(F(000) = 536\), \(T = 295\) K, \(R = 0.046\) for 1763 unique
Cryst. B26, 53-61] shows that there is significant shortening in the C–N bond distances in neutral
PCP. The orientations of the three rings with respect to each other also differ in the two molecules with
the piperidine ring occupying the axial position on the cyclohexane ring in PCP but the equatorial position
in protonated PCP.

Introduction. 1-(1-Phenylcyclohexyl)piperidine, (1),
commonly known as PCP, is an analgesic and a drug of
abuse (Perry, 1975). It was developed at Park-Davis
and Company in the late 1950’s and was sold under the
name Sernyl. In clinical trials it proved to be an
effective anaesthetic and a pre- and post-surgical
analgesic. Its use was discontinued, however, owing to
adverse side effects, such as extreme agitation,
disorientation and hallucination. The drug is biologi-
cally active both as the free base and as the hydro-
chloride salt (Goldstein, Aronow & Kalman, 1974;

\begin{center}
\begin{tikzpicture}
\draw (0,0) -- (1,1) -- (2,0) -- (1,-1) -- cycle;
\draw (3,0) -- (2,1) -- (1,0) -- (2,-1) -- cycle;
\end{tikzpicture}
\end{center}

We are currently investigating the physical and
chemical properties of PCP and related compounds and
have therefore synthesized a number of them (Jones,
Beaver, Schmoeger, Ort & Leander, 1981) following the
procedure of Kalir, Edery, Pelah, Balderman & Porath
(1969). As a first step in our further investigation of
these biologically active molecules, we have determined
the crystal and molecular structure of the free base of
PCP. The structure of protonated PCP was determined
by Argos, Barr & Weber (1970) as the hydrochloride
salt using visually estimated film data. The present
structure of the free base improves the precision of the
derived parameters and allows an assessment of the

© 1988 International Union of Crystallography